
Vision HDL Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Release Notes
© COPYRIGHT 2015–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2018a

Pothole Detection Example: Overlay a centroid marker and text
label to identify potholes . 1-2

Pixel Stream FIFO Block: Convert bursty video sources to
contiguous lines . 1-2

Separable Filter Example: Use the Line Buffer block to
implement a hardware-efficient custom filter 1-2

R2017b

Bilateral Filter Block and System Object: Apply a Gaussian
filter with edge preservation . 2-2

Birds-Eye View Block and System Object: Transform a front-
facing camera view to an overhead view 2-2

Line Buffer Block and System Object: Store a sliding window of
pixels for developing custom filter algorithms 2-2

Cartoon Image Abstraction Example: Extract features using
the Bilateral Filter block . 2-2

iii

Contents

R2017a

Pixel Stream Aligner: Synchronize two video streams for
comparison or overlay . 3-2

Corner Detection Example: Overlay detected corners using the
Pixel Stream Aligner . 3-2

Lane Detection Example: Process 480p video and compute ego
lanes in FPGA . 3-2

R2016b

Lane Detection Example: Reference design demonstrating
FPGA acceleration of a lane detection algorithm 4-2

Measure Timing Block and System Object: Measure video
signal timing from the pixel control bus 4-2

AXI4-Stream Video Interface: Generate an HDL IP core with an
AXI4-Stream Video interface for your video algorithm
(requires HDL Coder) . 4-2

Computer Vision on Xilinx Zynq-Based Hardware: Generate
and verify vision algorithms on a prototype board connected
to a live HDMI video stream . 4-2

Optimized grayscale morphology using Van Herk
algorithm . 4-3

Simpler way to call System objects . 4-4

iv Contents

R2016a

ROI Selector: Select a region of interest from a streaming
video source . 5-2

Grayscale Morphology: Perform dilation, erosion, opening, and
closing operations on grayscale inputs 5-2

Larger frame size for statistics computations 5-2

R2015b

Corner Detection Example: Detect intersecting edges with the
Harris algorithm . 6-2

MATLAB Compiler Integration: Generate standalone
executables for System objects . 6-2

HDL code generation for structure arguments in MATLAB . . . 6-2

Improved line buffer performance . 6-2

R2015a

Video synchronization signal controls for handling nonideal
timing and resolution variations . 7-2

Configurable frame rates and sizes, including 60FPS for high-
definition (1080p) video . 7-2

Frame-to-pixel and pixel-to-frame conversions to integrate
with frame-based processing capabilities in MATLAB and
Simulink . 7-2

v

Image processing, video, and computer vision algorithms with
a pixel-streaming architecture, including image
enhancement, filtering, morphology, and statistics 7-2

Implicit on-chip data handling using line memory 7-3

Support for HDL code generation and real-time verificatio
n . 7-3

vi Contents

R2018a

Version: 1.6

New Features

Bug Fixes

1

Pothole Detection Example: Overlay a centroid marker and
text label to identify potholes
This example extends the previous cartooning example to include calculating a centroid
and overlaying a centroid marker and text label on detected potholes. See “Pothole
Detection”.

Pixel Stream FIFO Block: Convert bursty video sources to
contiguous lines
The Pixel Stream FIFO block rebuffers a video stream to create image lines that have
contiguous valid pixels. Use this block to buffer bursty video sources, such as DMA data,
or a Camera Link® source that has valid pixels every N clock cycles.

For an example that shows how to use the Pixel Stream FIFO block on such sources, see
“Buffer Bursty Data Using Pixel Stream FIFO Block”.

Separable Filter Example: Use the Line Buffer block to
implement a hardware-efficient custom filter
This example shows how to design a separable filter using the Line Buffer block.
Separable filters use fewer hardware resources than equivalent 2-D filters. The example
explains how to determine if a filter is separable, and how to choose fixed-point data
types. See “Using the Line Buffer to Create Efficient Separable Filters”.

R2018a

1-2

R2017b

Version: 1.5

New Features

Bug Fixes

2

Bilateral Filter Block and System Object: Apply a Gaussian
filter with edge preservation
The Bilateral Filter block performs two-dimensional bilateral filtering of the input video.
The block calculates filter coefficients based on the spatial and intensity standard
deviations that you specify.

This release also includes an equivalent System object™,
visionhdl.BilateralFilter.

Birds-Eye View Block and System Object: Transform a front-
facing camera view to an overhead view
The Birds-Eye View block warps the front-facing camera images to a top-down
perspective, according to physical camera parameters that you specify. The Lane
Detection example is updated to use the new block. See Lane Detection.

This release also includes an equivalent System object, visionhdl.BirdsEyeView.

Line Buffer Block and System Object: Store a sliding window
of pixels for developing custom filter algorithms
The Line Buffer block provides a sliding N-by-1 column vector of pixels from a video
stream. The line memory handles video control signals and edge padding, and is pipelined
for high-speed video designs. To compose a neighborhood for further processing, use the
shiftEnable output signal to store the output columns, including padding, in a shift
register.

This release also includes an equivalent System object, visionhdl.LineBuffer.

Cartoon Image Abstraction Example: Extract features using
the Bilateral Filter block
This example show how to emphasize edges in an image by using bilateral filtering and
gradient generation. The original RGB image is quantized to a reduced number of colors,
then the cartoon lines are overlaid on the quantized version of the input image. See
Generate Cartoon Images Using Bilateral Filtering.

R2017b

2-2

https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.bilateralfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/examples/lane-detection.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.birdseyeview-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.linebuffer-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/examples/generate-cartoon-images-using-bilateral-filtering.html

R2017a

Version: 1.4

New Features

Bug Fixes

3

Pixel Stream Aligner: Synchronize two video streams for
comparison or overlay
The Pixel Stream Aligner block synchronizes two pixel streams by delaying one stream to
match the timing of a reference stream. You can use this block to align streams for
overlaying, comparing, or combining two streams, such as in a Gaussian blur operation.
Connect the delayed stream as the reference, and the earlier stream to the pixel and
ctrl ports.

This release also includes an equivalent System object,
visionhdl.PixelStreamAligner.

Corner Detection Example: Overlay detected corners using
the Pixel Stream Aligner
The Corner Detection example is updated to use the Pixel Stream Aligner block to
implement the overlay of the detected corners onto the original image.

Lane Detection Example: Process 480p video and compute
ego lanes in FPGA
The Lane Detection example now accepts 480p input video, without padding. To
accommodate the larger birds-eye-view frame, the design does not accept new input
while processing the current frame. Input frames that arrive before the previous frame is
finished are dropped. The example now determines which detected lanes are the ego
lanes, and removes outliers, in hardware.

R2017a

3-2

https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/visionhdl.pixelstreamaligner-class.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/examples/corner-detection.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/examples/lane-detection.html

R2016b

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

4

Lane Detection Example: Reference design demonstrating
FPGA acceleration of a lane detection algorithm
This example shows FPGA acceleration of lane-marking detection. The design includes an
FPGA-based candidate generator and a software-based polynomial fitting engine. See
Lane Detection.

Measure Timing Block and System Object: Measure video
signal timing from the pixel control bus
Use the Measure Timing block to investigate the blanking intervals between active frames
in streaming video data. This block observes the control signals in the pixel control bus in
your model, and returns the timing characteristics of the frames.

This release also includes an equivalent System object, visionhdl.MeasureTiming.

AXI4-Stream Video Interface: Generate an HDL IP core with an
AXI4-Stream Video interface for your video algorithm
(requires HDL Coder)
When your synthesis tool is Xilinx® Vivado®, HDL Coder™ can generate an IP core with
an AXI4-Stream Video interface for your video algorithm. To generate an IP core, model
your video algorithm using the streaming pixel interface. Then, in the Target platform
interface table, map the pixel data and pixel control bus ports to the AXI4-Stream
Video Master or AXI4-Stream Video Slave interfaces.

You can integrate the generated IP core into the Default video system reference
design or your own custom video reference design.

See Model Design for AXI4-Stream Video Interface Generation.

Computer Vision on Xilinx Zynq-Based Hardware: Generate
and verify vision algorithms on a prototype board connected
to a live HDMI video stream
The Computer Vision System Toolbox™ Support Package for Xilinx Zynq®-Based
Hardware (introduced April 2016) supports verification and prototyping of vision
algorithms on Zynq-based hardware.

R2016b

4-2

https://www.mathworks.com/help/releases/R2016b/visionhdl/examples/lane-detection.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/measuretiming.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.measuretiming-class.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/model-design-for-axi4-stream-video-interface-generation.html

HDL Coder is required for customizing the algorithms running on the FPGA fabric of the
Zynq device. Embedded Coder® is required for customizing the algorithms running on
the ARM® processor of the Zynq device. Using this support package, you can:

• Target your video processing algorithms to Zynq hardware from Simulink®. This
includes support for Vision HDL Toolbox blocks.

• Stream HDMI signals into Simulink to explore designs with real data.
• Generate HDL vision IP cores, using HDL Coder. This includes support for algorithms

that use Vision HDL Toolbox blocks.
• Deploy algorithms and visualize them using HDMI output on a screen.

For additional information, see Computer Vision System Toolbox Support Package for
Xilinx Zynq-Based Hardware.

Optimized grayscale morphology using Van Herk algorithm
The grayscale morphology blocks and objects now implement the Van Herk algorithm for
line, square, or rectangle structuring elements with more than 8 columns. This algorithm
uses fewer hardware resources, and has higher latency, than the previous comparator
tree implementation.

This change affects these blocks and objects:

• Grayscale Closing
• Grayscale Dilation
• Grayscale Erosion
• Grayscale Opening
• visionhdl.GrayscaleClosing
• visionhdl.GrayscaleDilation
• visionhdl.GrayscaleErosion
• visionhdl.GrayscaleOpening

Compatibility Considerations
Due to the latency change, you might need to rebalance parallel path delays in your
models that contain morphology blocks. A best practice is to use the pixel stream control

4-3

https://www.mathworks.com/help/releases/R2016b/supportpkg/xilinxzynqbasedvision/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/xilinxzynqbasedvision/index.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleopening-class.html

signals to synchronize parallel paths in your models, rather than inserting a specific
number of delays.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The
block implements this kernel for line, square, or rectangle structuring elements more
than 8 pixels wide, with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is log2(m)
+log2(n). The block implements this kernel for structuring elements smaller than 8 pixels
wide, or those with one or more pixels set to zero.

Simpler way to call System objects
Instead of using the step method to perform the operation defined by a System object,
you can call the object with arguments, as if it were a function. The step method
continues to work. This feature improves the readability of scripts and functions that use
many different System objects.

For example, if you create a visionhdl.LookupTable System object named
invertgray, then you call the System object as a function with that name.

invertgray = visionhdl.LookupTable(uint8(linspace(255,0,256));
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = invertgray(pixIn(p),ctrlIn(p));
end

The equivalent operation using the step method is:

invertgray = visionhdl.LookupTable(uint8(linspace(255,0,256));
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = step(invertgray,pixIn(p),ctrlIn(p));
end

When the step method has the System object as its only argument, the function
equivalent has no arguments. You must call this function with empty parentheses. For
example, step(sysobj) and sysobj() perform equivalent operations.

R2016b

4-4

R2016a

Version: 1.2

New Features

Bug Fixes

5

ROI Selector: Select a region of interest from a streaming
video source
The new block, ROI Selector, selects a region of interest (ROI) from a video stream. You
can specify one or more regions using input ports or mask parameters. The block returns
each new region as streaming pixel data and corresponding pixelcontrol bus.

This release also includes an equivalent System object, visionhdl.ROISelector.

Grayscale Morphology: Perform dilation, erosion, opening,
and closing operations on grayscale inputs
Perform grayscale morphology using these new blocks and System objects:

• Grayscale Closing
• Grayscale Dilation
• Grayscale Erosion
• Grayscale Opening
• visionhdl.GrayscaleClosing
• visionhdl.GrayscaleDilation
• visionhdl.GrayscaleErosion
• visionhdl.GrayscaleOpening

Larger frame size for statistics computations
The Image Statistics block and visionhdl.ImageStatistics System object now
support input regions up to 644 (16,777,216) pixels in size.

R2016a

5-2

https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.roiselector-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleopening-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/imagestatistics.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.imagestatistics-class.html

R2015b

Version: 1.1

New Features

Bug Fixes

6

Corner Detection Example: Detect intersecting edges with the
Harris algorithm
This example uses the Image Filter block to implement the Harris & Stephens corner
detection algorithm. See “Corner Detection” in Vision HDL Toolbox Examples.

MATLAB Compiler Integration: Generate standalone
executables for System objects
All System objects in Vision HDL Toolbox support generating executables with MATLAB®
Compiler™.

HDL code generation for structure arguments in MATLAB
HDL Coder now supports code generation for structure arguments of functions. For
Vision HDL Toolbox, this simplifies the arguments of functions targeted for HDL code
generation. Previously, you had to flatten the structure into the component control
signals.

function [pixOut,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
 HDLTargetedDesign(pixIn,hStartIn,hEndIn,vStartIn,vEndIn,validIn)

With HDL code generation support for structures, the arguments can now include the
control signal structure.

function [pixOut,ctrlOut] = HDLTargetedDesign(pixIn,ctrlIn)

The structure becomes individual control signals in the generated Verilog® or VHDL®
code.

Improved line buffer performance
This release improves the HDL performance of blocks and objects that have internal line
memory. The synthesized HDL code for the line buffer now supports HD video at 60fps on
the Xilinx Zynq-7000 ZC702 board, and 4k video at 30fps on the Xilinx Zynq-7000 ZC706
board. The following blocks and System objects use the improved line buffer code:

• Demosaic Interpolator
• Edge Detector

R2015b

6-2

https://www.mathworks.com/help/releases/R2015b/visionhdl/examples.html

• Image Filter
• Median Filter
• Closing
• Dilation
• Erosion
• Opening

For example, the table shows the R2015b performance of the Demosaic Interpolator,
using Gradient-corrected linear interpolation, and synthesized with Xilinx Vivado for
these target boards.

Xilinx Zynq-7000 ZC702 Xilinx Zynq-7000 ZC706
HD input video 4k input video
200 MHz 375 MHz
Consumes:

• no DSP48s
• 2.5% of the LUTS
• 1.5% of the slice registers
• 8 BRAMS (4%)

Consumes:

• no DSP48s
• 0.6% of the LUTS
• 0.4% of the slice registers
• 8 BRAMS (1%)

In the previous release, the performance is shown below.

Xilinx Zynq-7000 ZC702 Xilinx Zynq-7000 ZC706
HD input video 4k input video
135 MHz (need 150 MHz for 60 fps) 230 MHz (need 300 MHz for 30 fps)
Consumes:

• no DSP48s
• 2.6% of the LUTS
• 1.5% of the slice registers
• 8 BRAMS (4%)

Consumes:

• no DSP48s
• 0.5% of the LUTS
• 0.3% of the slice registers
• 8 BRAMS (1%)

6-3

R2015a

Version: 1.0

New Features

7

Video synchronization signal controls for handling nonideal
timing and resolution variations
Vision HDL Toolbox blocks and System objects accept and return video data as a serial
stream of pixel data and control signals. The protocol mimics the timing of a video
system, including inactive intervals between frames. Each block or object operates
without full knowledge of the image format, and can tolerate imperfect timing of lines and
frames. See Streaming Pixel Interface.

Configurable frame rates and sizes, including 60FPS for high-
definition (1080p) video
To support HD video applications, Vision HDL Toolbox blocks and System objects
generate HDL code capable of running at 150 MHz.

For supported video formats, see the Frame To Pixels block.

Frame-to-pixel and pixel-to-frame conversions to integrate
with frame-based processing capabilities in MATLAB and
Simulink
In MATLAB, use the visionhdl.FrameToPixels object to convert framed video data to
a stream of pixels and control signals.

In Simulink, use the Frame To Pixels block to convert framed video data to a stream of
pixels and control signals.

Image processing, video, and computer vision algorithms with
a pixel-streaming architecture, including image enhancement,
filtering, morphology, and statistics
Vision HDL Toolbox blocks and System objects implement hardware-friendly
architectures. For the list of blocks and System objects provided in this product, see HDL-
Optimized Algorithm Design.

R2015a

7-2

https://www.mathworks.com/help/releases/R2015a/visionhdl/ug/streaming-pixel-interface.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/frametopixels.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/visionhdl.frametopixels-class.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/frametopixels.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/hdl-optimized-algorithm-design.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/hdl-optimized-algorithm-design.html

Implicit on-chip data handling using line memory
Some Vision HDL Toolbox blocks and System objects include internal memory for a small
number of lines as required for the calculation at each image pixel.

The line memory stores kernel size - 1-by-active pixels per line pixels. Set Line buffer
size to a power of two that accommodates active pixels per line.

Support for HDL code generation and real-time verification
Vision HDL Toolbox provides libraries of blocks and System objects that support HDL
code generation. To generate HDL code from these designs, you must have an HDL Coder
license. HDL Coder also enables you to generate scripts and test benches for use with 3rd
party HDL simulators.

If you have an HDL Verifier™ license, you can use the FPGA-in-the-loop feature to
prototype your HDL design on an FPGA board. HDL Verifier also enables you to
cosimulate a Simulink model with an HDL design running in a 3rd party simulator.

See HDL Code Generation and Verification

7-3

https://www.mathworks.com/help/releases/R2015a/visionhdl/hdl-code-generation-and-verification.html

